Carmichael numbers in the sequence (2n k+1)n≥1

نویسندگان

  • Javier Cilleruelo
  • Florian Luca
  • Amalia Pizarro-Madariaga
چکیده

A Carmichael number is a positive integer N which is composite and the congruence aN ≡ a (mod N) holds for all integers a. The smallest Carmichael number is N = 561 and was found by Carmichael in 1910 in [6]. It is well– known that there are infinitely many Carmichael numbers (see [1]). Here, we let k be any odd positive integer and study the presence of Carmichael numbers in the sequence of general term 2nk +1. Since it is known [15] that the sequence 2n + 1 does not contain Carmichael numbers, we will assume that k ≥ 3 through the paper. We have the following result. For a positive integer m let τ(m) be the number of positive divisors of m. We also write ω(m) for the number of distinct prime factors of m. For a positive real number x we write log x for its natural logarithm.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sierpiński and Carmichael numbers

We establish several related results on Carmichael, Sierpiński and Riesel numbers. First, we prove that almost all odd natural numbers k have the property that 2nk + 1 is not a Carmichael number for any n ∈ N; this implies the existence of a set K of positive lower density such that for any k ∈ K the number 2nk + 1 is neither prime nor Carmichael for every n ∈ N. Next, using a recent result of ...

متن کامل

Some Computational Formulas for D-Nِrlund Numbers

and Applied Analysis 3 It follows from 1.11 or 1.12 that t n, k t n − 2, k − 2 − 1 4 n − 2 t n − 2, k , 1.13 and that t n, 0 δn,0 n ∈ N0 : N ∪ {0} , t n, n 1 n ∈ N , t n, k 0 n k odd , t n, k 0 k > n or k < 0 , 1.14 where δm,n denotes the Kronecker symbol. By 1.13 , we have t 2n 1, 1 −1 n 2n ! 42n ( 2n n ) , t 2n 2, 2 −1 n n! 2 n ∈ N0 , 1.15 t 2n 2, 4 −1 n 1 n! 2 ( 1 1 22 1 32 · · · 1 n2 ) n ∈ ...

متن کامل

New Sums Identities In Weighted Catalan Triangle With The Powers Of Generalized Fibonacci And Lucas Numbers

In this paper, we consider a generalized Catalan triangle de…ned by km n 2n n k for positive integer m: Then we compute the weighted half binomial sums with the certain powers of generalized Fibonacci and Lucas numbers of the form n X k=0 2n n+ k km n X tk; where Xn either generalized Fibonacci or Lucas numbers, t and r are integers for 1 m 6: After we describe a general methodology to show how...

متن کامل

There Are Innnitely Many Carmichael Numbers Larger Values Were Subsequently Found

Fermat wrote in a letter to Frenicle, that whenever p is prime, p divides a p?1 ? 1 for all integers a not divisible by p, a result now known as Fermat's `little theorem'. An equivalent formulation is the assertion that p divides a p ? a for all integers a, whenever p is prime. The question naturally arose as to whether the primes are the only integers exceeding 1 that satisfy this criterion, b...

متن کامل

Coefficient Conditions for Starlikeness of Nonnegative Order

and Applied Analysis 3 Theorem 1.3 see 12 . Let c2k c2k 1 μ k/k!, μ ∈ 0, 1 . For any positive integer n and 0 < θ < π , then i ∑n k 0 ck cos kθ > 0 if and only if 0 < μ ≤ μ0, ii ∑2n 1 k 1 ck sin kθ > 0 if and only if 0 < μ ≤ μ0, iii ∑2n k 1 ck sin kθ > 0 if 0 < μ ≤ 1/2. Here μ0 0.691556 · · · is the unique root in 0, 1 of ∫3π/2 0 cos t t1−μ dt 0. 1.6 2. Main Results For our purpose, it will be ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Math. Comput.

دوره 85  شماره 

صفحات  -

تاریخ انتشار 2016